L’economia politica studia come individui, imprese e istituzioni prendono decisioni sotto vincoli – risorse scarse, tecnologia disponibile, informazione imperfetta, regole formali e informali – e come queste decisioni, interagendo tra loro, producano esiti collettivi: prezzi e quantità, distribuzione del reddito, occupazione e inflazione, crescita, volatilità, stabilità finanziaria, emissioni, benessere. Il punto decisivo è che questi esiti non sono la semplice somma di azioni indipendenti. Sono spesso equilibri (o disequilibri) in cui ciò che fai tu modifica le opportunità e le strategie degli altri. Gli agenti inoltre non sono oggetti inerti: apprendono, anticipano, imitano, negoziano, cambiano credenze, reagiscono alle regole e talvolta reagiscono perfino alle descrizioni che noi facciamo del sistema.
Quando ha senso trattare un fenomeno come semplice, quando come complicato e quando come complesso?
L’etimologia aiuta a fissare le idee.
“Semplice” viene dal latino simplex, da sim- (uno solo) e plectere (piegare): letteralmente “piegato una sola volta”. Un fenomeno è semplice quando poche variabili contano davvero e le relazioni tra esse sono stabili nel dominio che ci interessa. Le connessioni sono lineari o quasi, e piccole variazioni producono effetti prevedibili.
“Complicato” deriva da cum + plectere: “piegare insieme”, intrecciare più fili. Qui i passaggi e le variabili sono molti, l’architettura è articolata, ma il sistema resta scomponibile: possiamo analizzarne i sottosistemi separatamente e, in linea di principio, più informazione e più capacità di calcolo migliorano la previsione in modo affidabile.
“Complesso”, dalla stessa radice cum + plectere, condivide l’idea dell’intreccio ma ne cambia la natura. Il tratto distintivo non è la quantità dei pezzi, bensì la loro interdipendenza adattiva. Le parti si influenzano reciprocamente attraverso feedback, effetti di rete, soglie, non linearità, aspettative, cambi di regime. In questi sistemi il tutto non è riducibile alla somma delle parti e l’aumento di informazione non garantisce maggiore prevedibilità, perché il sistema può reagire alle stesse informazioni.
Un’immagine mentale chiarisce la differenza. Il semplice è come un meccanismo con poche ruote dentate: se giri una manopola, sai con buona approssimazione cosa succede. Il complicato è come un aereo: migliaia di componenti, ma progettati in modo modulare; il comportamento di ciascuna parte non cambia strategicamente quando la osservi. Il complesso è più simile a un ecosistema o a un sistema di traffico urbano con individui che scelgono il percorso: l’interazione genera pattern emergenti, gli agenti si adattano e piccole differenze nelle condizioni iniziali possono produrre esiti molto diversi, soprattutto vicino a soglie critiche.
In microeconomia esistono ambiti davvero semplici in senso forte. Pensa al vincolo di bilancio del consumatore o al problema elementare di massimizzazione del profitto: sono relazioni aritmetiche e logiche. Se il reddito è dato e i prezzi sono dati, il consumatore non può spendere più di quanto ha; se la tecnologia è data, l’impresa non può produrre oltre ciò che consente la funzione di produzione. Questa semplicità non è banalità: è alfabetizzazione. I vincoli definiscono lo spazio delle possibilità. Quando si dice che “la micro è troppo semplice”, spesso si confonde la funzione pedagogica di questi strumenti con la natura complessiva della disciplina. Il complicato emerge quando il problema resta dello stesso tipo ma aumenta il numero di dettagli. Un consumatore con molti beni, vincoli non lineari, tasse differenziate; un’impresa multiprodotto con molte restrizioni tecniche; un’asta con regole articolate. Il problema è più difficile, ma non cambia natura: con più informazione e più calcolo possiamo, in linea di principio, trovare la soluzione. Le preferenze e la tecnologia non cambiano perché le stiamo studiando. Il complesso appare quando le decisioni di ciascuno dipendono in modo strategico da quelle degli altri e quando le aspettative influenzano gli esiti. È il terreno dell’interazione strategica, degli effetti di rete, delle esternalità, delle dinamiche di mercato con entrata e uscita. Qui non basta chiedersi “qual è l’effetto medio di una variazione di prezzo?”, ma “come reagiscono gli altri agenti?”, “si attivano feedback che amplificano o attenuano l’effetto?”, “esistono soglie oltre le quali il mercato cambia struttura?”. In questi casi la microeconomia diventa analisi di equilibri, di meccanismi e di regimi: l’esito dipende dall’intreccio delle scelte, non solo dal singolo problema di ottimizzazione.
Questa distinzione prepara a comprendere il ruolo dei modelli. Un modello non è una fotografia del mondo; è una mappa. Una mappa della metropolitana è eccellente per muoversi tra linee e stazioni, pessima per capire l’altimetria. In economia esistono modelli costruiti per isolare un canale causale, modelli per valutare controfattuali di policy, modelli per guidare l’identificazione empirica, modelli per esplorare vulnerabilità e soglie nei sistemi complessi (Simon, 1962; Weaver, 1948). Il rigore non consiste nel pretendere che un singolo modello faccia tutto, ma nel dichiarare quale problema sta affrontando, quali assunzioni lo rendono trattabile e dove prevediamo che possa fallire (Friedman, 1953; Hausman, 1992).
Qui entra il ceteris paribus. Non significa “nel mondo il resto resta fermo”. Significa: sto formulando un’affermazione su un meccanismo specifico, non sull’intero sistema. È una clausola di significato. Prendiamo l’enunciato classico: “se il prezzo aumenta, la quantità domandata diminuisce”. Senza clausole è ambiguo: potrebbe essere smentito se nel frattempo aumentano redditi, cambia la qualità, mutano i prezzi dei sostituti o le aspettative. Con il ceteris paribus l’enunciato diventa preciso: se aumenta il prezzo e gli altri determinanti rilevanti non si muovono in modo da interferire, il canale di sostituzione spinge la domanda verso il basso. Stiamo isolando un effetto marginale, una tendenza causale (Cartwright, 1989; Strevens, 2012). Se nella realtà agiscono più forze simultaneamente, non abbiamo “salvato” la teoria: stiamo distinguendo canali che interagiscono. Nelle scienze sociali molte “leggi” sono generalizzazioni su capacità causali che si manifestano sotto condizioni appropriate. Il ceteris paribus rende esplicite tali condizioni. Senza di esso, le frasi diventano vaghe e meno scientifiche.
Tuttavia, nei sistemi complessi il ceteris paribus può essere usato ingenuamente. L’errore tipico è tenere fisso ciò che in realtà reagisce alla variabile che stiamo modificando: un problema di endogeneità concettuale. La critica di Lucas (1976) formalizza questa intuizione: relazioni econometriche stimate in un certo regime di regole e aspettative possono cambiare se la policy altera quel regime. Cambiare le regole può cambiare la partita; e non possiamo usare le statistiche della vecchia partita per prevedere la nuova come se nulla fosse.
Da qui una distinzione fondamentale per uno studente di economia politica: effetto parziale ed effetto totale. L’effetto parziale isola un canale, spesso in equilibrio parziale. L’effetto totale lascia reagire l’intero sistema: prezzi, quantità, aspettative, entrate e uscite dal mercato, innovazione, norme. Nei sistemi semplici o complicati la differenza può essere contenuta; nei sistemi complessi può essere enorme, perché l’interazione tra canali genera feedback e cambi di regime.
La ricerca empirica moderna può essere letta come un tentativo di rendere operativo il ceteris paribus. Nei dati il “resto” non è mai uguale, quindi occorre costruire confronti credibili per identificare effetti causali: esperimenti randomizzati, difference-in-differences, regression discontinuity, strumenti (Angrist e Pischke, 2009; Imbens e Rubin, 2015). Studi come Card e Krueger (1994) mostrano come disegni empirici possano isolare un canale in contesti reali.
Ma anche un disegno causale impeccabile stima tipicamente un effetto locale, in un certo contesto e sotto un certo regime. La generalizzazione richiede teoria e comprensione dei meccanismi. In un sistema complesso, scalare una policy può modificarne l’effetto proprio perché cambia la struttura del sistema.
La filosofia della scienza entra qui in modo operativo. Un enunciato economico ben formulato deve specificare:
– quale meccanismo è in gioco;
– sotto quali condizioni è dominante;
– quali condizioni lo indeboliscono o lo ribaltano;
– se si parla di breve o lungo periodo;
– se l’analisi è di equilibrio parziale o generale;
– quale parte è identificata empiricamente e
– quale è extrapolazione teorica.
Questa è precisione scientifica. In sintesi, il ceteris paribus è la punteggiatura della lingua economica. Nei fenomeni semplici e complicati spesso basta per produrre buona scienza. Nei fenomeni complessi è il primo passo, non l’ultimo: dopo aver isolato un canale dobbiamo chiederci come reagisce il sistema, quali feedback si attivano, quali soglie possono essere attraversate e se stiamo cambiando regime. L’economia non promette onniscienza; promette conoscenza condizionale, meccanicistica e disciplinata, insieme a un’analisi esplicita di portata e robustezza delle proprie affermazioni.















